If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7x-63=0
a = 2; b = 7; c = -63;
Δ = b2-4ac
Δ = 72-4·2·(-63)
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{553}}{2*2}=\frac{-7-\sqrt{553}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{553}}{2*2}=\frac{-7+\sqrt{553}}{4} $
| 4y-11=13y= | | 11=3q-7 | | 2x2x2x=243x-15 | | 5x+10=-5x= | | g2+3g=4 | | 3(x-1)=-3(x-1) | | 11x-10=4x+11 | | 3m-8=4(m-2)+6 | | 3(j+3)=-6 | | 3(z+7)-21=-33 | | 3(3+y)=21 | | y-1=4y-2(y+8) | | 5x+2+2x+3x+8+2x=x | | 3x-5(x+2)=4x-1 | | 5(1+h)=-5 | | 4(p-1)=8p-3(p+2) | | 3(1+n)=9 | | -5t+13=3t-3 | | (2x-4)(x-7)=0 | | (x+4)(x-2)=(x-5)(x+3) | | 7(2x+2)=70 | | 5(f+8)=40 | | 35x+160=195 | | 3(e+8)=9 | | 3(3x+4)-7x=6(3x-1)-10x | | 3x-3=13x-48 | | 3-(y-5)+8=17 | | 2(7+d)=14 | | x-4/3-5x-1/2=2x+1/6 | | 15=78-99y | | y=2(-11/3)+17 | | 3x/2+10=4x |